Hydronic heat exchangers or "steam" systems have been around with us since the 1800's at the dawn of the Industrial Age. Steam engines changed the world of transportation almost overnight and steam heat or hydronic heat exchanger systems did the same thing residential and commercial heating.
Almost at the same time that the first steam boilers were made power the great railroad engines, manufacturing mills and cargo ships, steam heat found its way into the home. This is not an unnatural course of events considering the amount of heat that can be put out by steam; as anyone who has ever sat for long in a moist sauna can testify to.
The Theory behind Hydronic Heating Systems
These systems are actually very simple. The most common hydronic heat exchanger consists of three main components: the boiler (the heating source), the piping array and the heat exchangers (which transfer the heat from the water into warmth for the room.)
The process goes like this: water is heated and then either turned into steam or very near to boiling and is then piped to radiators (located through-out the house) or to thermal mass floorings (which absorbs the heat and slowly releases it into the room).
The 3 types of fuel sources for a hydronic heat exchanger are electric, gas or oil-fired boilers. Boilers can be made from cast-iron, stainless steel or copper. While there are different ways that each of these boilers are constructed, each with their own advantages and disadvantages, the main idea to understand that is each boiler is basically heating a closed-water system.
This means that any chronic lost of fluid can cause a problem. This is why the type of piping array becomes critically important to the overall system.
The Three Types
As you may have guessed by now, hydronic heat exchangers are most often classified by their piping arrangements:
o One-pipe or single pipe
o Two pipe
o Loop series
The oldest of their designs is the one-pipe array. A single pipe carries steam from the boiler to every radiator in the structure. The single-pipe has a layout made so that eventually gravity will pull the condensed water in the piping back into the boiler tank. A two-pipe system uses a second return pipe instead of gravity-induced flow to bring water back to the holding tanks.
Both single and two pipe systems were designed for steam-based heat exchangers but most modern units use hot water in a loop series of pipes as the heat conductors. This type of system offers a slimmer wall-mount, stainless steel heat transfer unit and has better energy-efficient water to air heat transfer rates.
Another advantage of this kind of hydronic heating is that if properly equipped will heat water for domestic uses like cooking, washing or bathing as well as water for external uses such as swimming pools, spas, hot tubs, garages or greenhouses. Plus looped pipe hydronic heat exchangers will not only provide heat in the winter months but can be used to circulate chilled water in the summer months to aid in overall cooling.
So as you can see modern hydronic heat exchanger systems can not warm you and your family in those cold winter months but also provide a low cost method of central air cooling as well.
A fin tube heat exchanger article by Scotts Digital - Best SEO company in Singapore.
Almost at the same time that the first steam boilers were made power the great railroad engines, manufacturing mills and cargo ships, steam heat found its way into the home. This is not an unnatural course of events considering the amount of heat that can be put out by steam; as anyone who has ever sat for long in a moist sauna can testify to.
The Theory behind Hydronic Heating Systems
These systems are actually very simple. The most common hydronic heat exchanger consists of three main components: the boiler (the heating source), the piping array and the heat exchangers (which transfer the heat from the water into warmth for the room.)
The process goes like this: water is heated and then either turned into steam or very near to boiling and is then piped to radiators (located through-out the house) or to thermal mass floorings (which absorbs the heat and slowly releases it into the room).
The 3 types of fuel sources for a hydronic heat exchanger are electric, gas or oil-fired boilers. Boilers can be made from cast-iron, stainless steel or copper. While there are different ways that each of these boilers are constructed, each with their own advantages and disadvantages, the main idea to understand that is each boiler is basically heating a closed-water system.
This means that any chronic lost of fluid can cause a problem. This is why the type of piping array becomes critically important to the overall system.
The Three Types
As you may have guessed by now, hydronic heat exchangers are most often classified by their piping arrangements:
o One-pipe or single pipe
o Two pipe
o Loop series
The oldest of their designs is the one-pipe array. A single pipe carries steam from the boiler to every radiator in the structure. The single-pipe has a layout made so that eventually gravity will pull the condensed water in the piping back into the boiler tank. A two-pipe system uses a second return pipe instead of gravity-induced flow to bring water back to the holding tanks.
Both single and two pipe systems were designed for steam-based heat exchangers but most modern units use hot water in a loop series of pipes as the heat conductors. This type of system offers a slimmer wall-mount, stainless steel heat transfer unit and has better energy-efficient water to air heat transfer rates.
Another advantage of this kind of hydronic heating is that if properly equipped will heat water for domestic uses like cooking, washing or bathing as well as water for external uses such as swimming pools, spas, hot tubs, garages or greenhouses. Plus looped pipe hydronic heat exchangers will not only provide heat in the winter months but can be used to circulate chilled water in the summer months to aid in overall cooling.
So as you can see modern hydronic heat exchanger systems can not warm you and your family in those cold winter months but also provide a low cost method of central air cooling as well.